

情報をつなぐコンパウンド

白岩 徹男

1. 進化する通信技術

パソコンを使ってブログを書いたり、コンサートチケッ トを予約したり、株の取引を行なうことは、今日では珍し いことではありません。インターネットは1990年代の当 初から普及しはじめ、2000年になると、加速度的に高度 情報通信ネットワーク社会が構築されました。2005年末 には、利用者が8.529万人まで拡大し、一般世帯の87%、 企業では99.1%までいきわたっています。

最近では、配信される動画などのコンテンツも高度な ものとなり大容量化が進んでいます。この通信環境を構 築しているのがブロードバンド回線であり光回線です。 ブロードバンドにおける光回線の利用率は、2005年から 2006年の1年間で14.8%から27.2%へ急増しています。 容量の大きなコンテンツは、光ファイバーを通して高速 にパソコンへ届けられています。光ファイバーの延長や 分岐の際には、フェルールと呼ばれる長さ1cm程度の 部品が必要です。フェルールによって光ファイバーは正 確につなげられ、ネットワークを作っています。フェルー ルは、光回線の交差点ともいえるかもしれません。

2.精密な成形を実現する粉末射出成形

フェルールは、複雑な三次元形状のセラミックスで、高 い寸法精度が要求されます。粉末射出成形(PIM)と呼 ばれる方法で、全世界の生産量のうち70~80%が生産 されています。

PIMは、成形材料別にセラミックス射出成形(CIM)と 金属射出成形(MIM)に大別できます。あらかじめセラミ ックスまたは金属粉末とバインダーを混練したPIM用コ ンパウンドをつくり、プラスチックの射出成形と同様に、 金型へ押し込むことで成形します。その後、成形体は脱脂・ 焼成の工程を経て、製品化されます(図1)。この成形方 法は、他の機械加工では困難な形状のセラミックス・金 属部品をより目的形状に近く成形可能であること(ニア・ ネット・シェイプ)と、後加工を少なくできることが大きな 特長です。

CIM製品は、古くは繊維機械部品の糸道に使用され、 さらに半導体関連の部品、宝飾品関係の部品にも採用さ

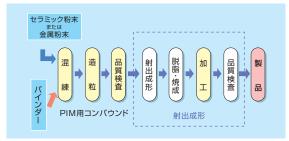


図1 PIM製品の製造工程

れています。MIM製品としては、時計部品、機械装置部品、 携帯電話のヒンジ、自動車部品などに使用されています。

3.PIM用コンパウンド

PIM用コンパウンドは、ジルコニア、アルミナ、SUS、鉄、 スーパーインバーなど、用途に応じた粉末とバインダー が用いられます。PIMに使用されるコンパウンドの品質は、 製品の品質に大きく影響し、成形性・脱脂性・製品に対す る寸法安定性などのさらなる向上が求められ、使用する バインダーや混練技術は日進月歩しています。

第一セラモは、バインダーと混練技術を独自に開発し、 各種CIM用コンパウンド(写真1)やMIM用コンパウンド を供給しています。

写真1 CIM用コンパウンド

PIM用コンパウンドはもちろん、混練に関するさまざ まなご相談をお待ちしています。

略語解説

PIM:Powder_Injection Molding CIM: Ceramics Injection Molding MIM:Metal_Injection Molding SUS:Stainless Used Steel、ステンレス鋼 スーパーインバー:鉄、ニッケル、コバルト三元合金

参考資料

OPTORONICS (2007) No. 1 総務省 平成18年通信利用動向調査